Welcome to QSARtuna Documentation!
Welcome to QSARtuna: QSAR using Optimization for Hyperparameter Tuning.
Build QSAR models with hyperparameters optimized by Optuna.
Documentation:
- Intro and Quick Start
 - Jupyter Notebook: Preprocessing Data for QSARtuna
 - QSARtuna CLI Tutorial
- This tutorial
 - Background
 - Preparation
 - Preprocessing: splitting data into train and test sets, and removing duplicates
 - Choosing scoring function
 - Advanced functoinaility: algorithms & runs
 - Probabilistic Random Forest (PRF)
 - ChemProp
 - Probability calibration (classification)
 - Uncertainty estimation
 - Explainability
 - Log transformation
 - Covariate modelling
 - Advanced options for QSARtuna runs
 - Preexisting models: Convert scikit-learn(-like) models to QSARtuna models
 - Preexisting models: Using prexisting models as custom models for Optimisation or Build
 
 - AutoML (Automated model retraining)
 - List of available ML algorithms
- AdaBoostClassifier
 - Lasso
 - KNeighborsClassifier
 - KNeighborsRegressor
 - LogisticRegression
 - PLSRegression
 - RandomForestClassifier
 - RandomForestRegressor
 - Ridge
 - SVC
 - SVR
 - XGBRegressor
 - PRFClassifier
 - ChemPropRegressor
 - ChemPropClassifier
 - ChemPropHyperoptClassifier
 - ChemPropHyperoptRegressor
 - ChemPropHyperoptRegressorPretrained
 - CalibratedClassifierCVWithVA
 - Mapie
 - CustomRegressionModel
 - CustomClassificationModel
 
 - List of available molecular descriptors
- Avalon
 - ECFP
 - ECFP_counts
 - PathFP
 - MACCS_keys
 - UnscaledPhyschemDescriptors
 - UnscaledJazzyDescriptors
 - UnscaledZScalesDescriptors
 - PhyschemDescriptors
 - JazzyDescriptors
 - PrecomputedDescriptorFromFile
 - ZScales
 - SmilesFromFile
 - SmilesAndSideInfoFromFile
 - ScaledDescriptor
 - CompositeDescriptor
 - AmorProtDescriptors
 - UnscaledMAPC
 - UnscaledZScalesDescriptors
 - MAPC
 - ZScalesDescriptors
 
 - List of available evaluation splits
 - List of available data transform
 - List of available deduplicators