route_distances package¶
Subpackages¶
Submodules¶
route_distances.clustering module¶
Module containing a class to help out with clustering
- class route_distances.clustering.ClusteringHelper(distances)¶
Bases:
object
A helper class to perform clustering of items based on a pre-computed distance matrix.
The clustering is the agglomerative clustering algorithm implemented in Scikit-learn.
- Parameters
distances (np.ndarray) –
- Return type
None
- property labels: numpy.ndarray¶
Return the cluster labels
- fixed_clustering(n_clusters, **kwargs)¶
Make a fixed number of clusters.
Additional arguments to the clustering algorithm can be passed in as key-word arguments
- Parameters
n_clusters (int) – the desired number of clusters
kwargs (Any) –
- Returns
the cluster index for each observation
- Return type
numpy.ndarray
- linkage_matrix(**kwargs)¶
Compute the linkage matrix.
Additional arguments to the clustering algorithm can be passed in as key-word arguments
- Returns
the linkage matrix
- Parameters
kwargs (Any) –
- Return type
numpy.ndarray
- optimize(max_clusters=5, **kwargs)¶
Optimize the number of cluster based Silhouette metric.
Additional arguments to the clustering algorithm can be passed in as key-word arguments
- Parameters
max_clusters (int) – the maximum number of clusters to consider
kwargs (Any) –
- Returns
the cluster index for each observation
- Return type
numpy.ndarray
- static cluster(distances, n_clusters, **kwargs)¶
Cluster items based on a pre-computed distance matrix using a hierarchical clustering.
- Parameters
distances (numpy.ndarray) – the distance matrix
n_clusters (int) – the desired number of clusters
kwargs (Any) –
- Returns
the cluster index for each observation
- Return type
numpy.ndarray
route_distances.route_distances module¶
Module containing a factory function for making predictions of route distances
- route_distances.route_distances.route_distances_calculator(model, **kwargs)¶
Return a callable that given a list routes as dictionaries calculate the squared distance matrix
- Parameters
model (str) –
kwargs (Any) –
- Returns
- Return type
Callable[[List[Dict[str, Any]]], numpy.ndarray]
route_distances.validation module¶
Module containing routes to validate AiZynthFinder-like input dictionaries
- class route_distances.validation.MoleculeNode(*, smiles, type, children)¶
Bases:
pydantic.main.BaseModel
Node representing a molecule
- Parameters
smiles (str) –
type (route_distances.validation.ConstrainedStrValue) –
children (Optional[types.ConstrainedListValue[route_distances.validation.ReactionNode]]) –
- Return type
None
- smiles: str¶
- type: route_distances.validation.ConstrainedStrValue¶
- children: Optional[types.ConstrainedListValue[route_distances.validation.ReactionNode]]¶
- class route_distances.validation.ReactionNode(*, type, children)¶
Bases:
pydantic.main.BaseModel
Node representing a reaction
- Parameters
type (route_distances.validation.ConstrainedStrValue) –
children (List[route_distances.validation.MoleculeNode]) –
- Return type
None
- type: route_distances.validation.ConstrainedStrValue¶
- children: List[route_distances.validation.MoleculeNode]¶
- route_distances.validation.validate_dict(dict_)¶
Check that the route dictionary is a valid structure
- Parameters
dict – the route as dictionary
dict_ (Dict[str, Any]) –
- Return type
None